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Abstract 

this paper we describe^high-order accurate Godunov-type schemes for 

the computation of weak solutions of hyperbolic conservation laws that are 

essentially non-oscillatory. We—show- that the problem of designing such 

schemes reduces to a problem in approximation of functions, namely that of 

reconstructing a piecewise smooth function from its given cell averages to 

high order accuracy and without introducing large spurious oscillations.  To 

solve this reconstruction problem we introduce a new interpolation technique 

that when applied to piecewise smooth data gives high-order accuracy wherever 

the function is smooth but avoids having a Gibbs-phenomenon at f 

discontinuities.  ^Jjj^JU       ^V. / ^-J-^ j   fjfaf^ A^ti~^> 
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ON HIGH-ORDER ACCURATE INTERPOLATION FOR 
NON-OSCILLATORY SHOCK CAPTURING SCHEMES 

Ami Harten 

1.  Introduction« 

In this paper we present an interpolation technique that gives rise to 

new high-order accurate non-oscillatory schemes for the numerical solution of 

scalar conservation laws: 

(1.1a)      u + f(u)  r u + a(u)u -0 ,  -» < x < •», t>0 

(1.1b)      u(x,0) - uQ(x)  ,  — < x < • . 

We assume the initial data u0(x) to be piecewise-smooth functions that 

are either periodic or of compact support, and denote the evolution operator 

of the unique entropy solution by E(t). 

Let vh(x,t) denote a numerical approximation to a weak solution u(x,t) 

of (1.1), such that v? - vjjtxj,^), Xj - jh, tjj • nt,  satisfies the 

conservation form 

i+1 (1.2.)   v5+1 - v» - x(fj+1/2 - g )  =-   tEh(x).v
n]j 

Here E
V(T)  is the numerical solution operator, \  » -r/h and f + 1/2'  

the 

numerical flux, is a function of  2k variables 

<1'2b) fVl/2 " '(Vj-k+1 V"+k> 

which is consistent with (1.1a) in the sense that 

(1.2c) f(u,u,...,u) - f(u) 
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It is well known that if the total variation of the numerical solution 

(1.2) is uniformly bounded in h for 0 < t < T 

(1.3) TV(vh(.,t)) < CTV(u0)  , 

'•.       then any refinement sequence h +  o, T = 0(h), has a subsequence h. + 0 so 
,s * 

L>       that 
L1 

(1.4) vh     • u 

>\ 
''• where u is a weak solution of (1.1).  Furthermore, if all limit solutions 

j|       (1.4) satisfy an extropy condition that implies uniqueness of the initial 

value problem (1.1), then the numerical scheme is convergent (see [4]). 

Our goal in designing numerical schemes is to obtain a computer code that 

is both reliable and efficient. To achieve reliability we would like to use 

schemes that are total-variation-stable in the sense of (1.3); to get 

efficiency we need high-order accuracy. Unfortunately it became clear in the 

a       development of shock-capturing schemes that it is not easy to satisfy both 

\-       requirements at the same time:  Endowing a scheme with a property that implies 

[>       automatic control over the growth of the total variation of the numerical 

m       solution may very well lead to a restriction on the order of accuracy of the 

i •       scheme. 

The first successful attempt to achieve nonlinear stability was to 

require positivity of the numerical solution operator, which led to the 

development of monotone schemes.  However the requirement of positivity auto- 

matically implies first order accuracy of the scheme (see [2]). 

g The next step in the development was to consider the larger class of 

total-variation-diminishing (TVD) schemes, where the numerical solution 

operator is required to diminish the total variation of any BV function v 

jj        (1.5) TV(Eh(T)»v) < TV(v)  ; 

these schemes trivially satisfy (1.3) with C « 1  (see [3]).  We were able to 
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construct TVD schemes that in the sense of local truncation error are high- 

order accurate everywhere except at local extreme where they necessarily 

degenerate into first order accuracy/ (see [9], [3], [1], [7], [8]).  The 

perpetual damping of local extrema determines the cumulative global error in 

the Lp-norm to be of  (1 + —)-th order, i.e. only first-order in the maximum 

norm but second-order in L^. 

Recently ([5]) we went one step further and introduced a larger class of 

non-oscillatory schemes/ in which the application of the numerical solution 

operator to any mesh function v is required not to increase the number of 

local extrema (note that this statement does not depend on h nor on the 

smoothness of v). Unlike TVD schemes, which are a subset of this class, non- 

oscillatory schemes are not required to damp the values of each local extremum 

at every single time-step, but are allowed to occasionally accentuate a local 

extremum. Because of this last property we were able to construct non- 

oscillatory schemes that are second-order accurate also in the maximum norm. 

In the present paper we relax the control over the possible growth of the 

total variation of the numerical solution even further and consequently are 

able to design schemes that are accurate to any finite order r.  These 

schemes satisfy 

(1.6) TV(E.(T)«U) < TV(u) + 0(hr+1),   u e U 
n 

where U is the set of functions that are C  except at a finite number of 

points (in any finite interval) where they may have a discontinuity in the 

function or some derivative (  describes the generic form of the "computable" 

solutions of (1.1)).  We shall refer to this class of schemes as essentially 

non-oscillatory schemes«  The inequality (1.6) ensure- that the scheme does 

not have a Gibbs-like phenomenon of oscillations that are proportional to the 

size of the jump at a discontinuity; the permissible increase in total 
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variation is solely due to the smooth part of the function.  Unlike the 

second-order accurate non-oscillatory schemes of [5] which are a subset of 

this class, essentially non-oscillatory schemes may occasionally increase the 

number of local extrema.  However these extra oscillations are on the level of 

truncation error in the smooth part and therefore can be regarded as "non- 

essential oscillations". 

In the following we shall present high-order Godunov-type schemes that 

satisfy (1.6), and show that the design problem reduces to solving a problem 

in interpolation; the latter is the main topic of this paper. 
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2.  High-order accurate Godunov-type schemes. 

Let 

(2.1) ü(x) -1 /^2 u(x+y)dy = (A^uHx) 

denote the sliding average of u(x).  The sliding average u(x,t)  of a weak 

'^-r 

solution of (1.1) satisfies 

(2.2a) |^ü(x,t) +£ [f(u(x+ |»t>) - f(u(x- |,t))] « 0  . 

Integrating (2.2a) from t to t + t we get 

(2.2b) ü(x,t+T) - ü(x,t) - A[f(x+-|,t;u) - f(x--|,t;u)] 

where X • T/h and 

(2.2c) f(x,t/u) - £  /! f(u(x,t+n))dn  . 

Thus the exact weak solution of (1.1) satisfies the following relation on the 

computational mesh 

— n+1   — r\ A * 
(2.3)        Uj   - Uj  - A[*(*j+1/2'V

U) '  f(xj-1/2'Vu)]  ' 

where u.  * u(x.,t )  is the cell average of the solution at time tR. 

Hext we compare (2.3) to the numerical scheme in conservation form (1-2) 

where we set v. 3 u . We see that if the resulting numerical flux fj+i/2 

satisfies 

(2.4a) f j+1/2 - 1 /J tW*^i/2,tn+*))*« *  0(hr) 

then 

(2.4b) v°+1 - Uj11"'1 +0(hr+1)  , 

provided that the coefficient in the 0(hr)  term in (2.4a) is sufficiently 

smooth.  Relation (2.4b) shows that in the sense of cell-averages the 

truncation error of the scheme is 0(hr  )#  i.e. 

(2.5) u(t+T) - Eh(T).u(t) - 0(h
r+1)  . 

We shall refer to a scheme that satisfies (2.4)-(2.5) as an r-th order 

Godunov-type scheme.  (Note the difference from Lax-Wendroff-type schemes that 
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are derived by approximating a Taylor expansion of the solution and where the 

truncation error is made small in a pointwise sense.) 

We observe that although (2.3) is a relation between the cell averages of 

the solution at tn and tn+1,  the evaluation of the numerical flux in 

(2.4a) involves point values of the solution.  Since 

(2.6) ü(x) - u(x) * 0(h2) 

we have to devise a technique to recover point values from given cell averages 

to a desired accuracy, in order to obtain Godunov-type schemes that are more 

than second-order accurate.  The rest of this paper is devoted to describing 

an algorithm for the solution of this problem in approximation:  Given {u.}, 

cell averages of u e U (i.e. piecewise smooth with a finite number of 

discontinuities) find R(x;u)  that reconstructs u(x)  to any finite order r 

(2.7a) R(x;u) • u(x) + 0(hr) 

wherever u(x)  is smooth, and such that 

(2.7b) R(x.ju) - u.  , 

(2.7c) TV(R(»;Ü)) < TV(u) + 0(hr)  ; 

here R denotes the sliding average of R. 

It is easy to see that once we solve this approximation problem, the 

Godunov-type scheme 

(2.8) v"-4"1 = E^Cn-v11 • Ah'E(T)'R(';v
n)   , 

where ^    is the cell-averaging operator (2.1) and E(T)  is the evolution 

operator of (1.1), is r-th order accurate and essentially non-oscillatory in 

the sense of (1.6). 

To see that the scheme (2.8) is essentially non-oscillatory we observe 

that both An and E(T)  are positive operators and therefore also TVD. 

Consequently 

(2.9) TV(Eh(T)«u) = «V(Äj»l(T)•»(•»»)) < TV(R(«;u)) 
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and (1.6) follows immediately from (2.7c). 

Next we show that (2.8) is r-th order accurate in the sense of (2.4). 

Let us denote 

(2.10a) v («,t) = E(t)«R(«;vn)  . 
n 

Using (2.7b) and the fact that vn(x,t) is an exact solution of the 

conservation law (1.1a) we can rewrite (2.8) in the form (2.3), i.e. 

(2.10b) V^1 - *5 - X(fj+1/2 - f^ 

where 

(2.10c) ij+1/2 = 4 /; f(vn(xj+1/2,t))dt   . 

(2.4a) then follows from (2.7a) and ehe stability of entropy solutions of 

(1.1). 

Remarks:  (1) The scheme (2.8) is the abstract form of Godunov-type schemes. 

In practice we use an approximation to (2.10) which is obtained by using an 

appropriate numerical quadrature for the integral in (2.10c), and using an 

approximate solution operator to evaluate v
n(
x-i+i/2/t) in (2.10a).  For more 

details see [5] and [6]. 

(2) We initialize the computation by taking cell-averages of the given initial 

data/ i.e. 

(2.11a) vlj-ü.0 =^/^2u0(xj+y)dy   . 

When we apply the scheme(2.8) N times,  N»T = t,  and the initial data 

are such that the solution is smooth, we expect the truncation error (2.5) to 

accumulate linearly.  Thus at the end of the time loop we get (since T = 

0(h)) 

(2.11b) v* =ü(x ,t) + 0(hr)  . 

Since in general we are interested in pointwise values we output R(xa?vN) 

which gives us the pointwise data to the desired accuracy: 
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(2.11c) R(xjvN)  - R(x»u)  + 0(hr)  - u(x,t)   + 0(hr)     . 

8 

'..-.,-•._. 
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3.  Interpolation. 

In this section we present a new interpolation technique H^x/u)  for 

functions u e U 

(3.1a) Vxj;u) = u(Xj)  . 

The interpolant Hm(x;u)  is a piecewise polynomial function of x,  i.e. 

(3.1b) H^x/u) • g^ j+v2^x'u)  for xj < x < xj+1 

where q *+i/a *s a polynomial in x of degree m.  Wherever u(x)  is 

smooth we get that 

(3.2) —t- H (xju) = $-- u(x) + 0(hm+t_k)  ,  0<k<m  . 
dxK m       dxk 

(We use here the standard convention that k = 0 corresponds to the function 

itself.) 

The new feature of this interpolation technique is that, although u may 

be discontinuous, the interpolant H^xiu)  is essentially non-oscillatory in 

the sense that 

(3.3) TV(H (MU)) < TV(u) + 0(hm+1)  . 

This interpolation technique will be used in the following sections to develop 

an algorithm for the solution of the reconstruction problem (2.7). 

To accomplish (3.2) we take a  .+1/2(x;u)  to be the m-th degree 

polynomial that interpolates u(x)  at the m + 1  successive points {x.}, 

im(j) < i < im(j) + m,  that include Xj  and Xj+1,  i.e. 

(3'4a)       VJ+,/2
(xiiu)su(xi1  '  V3> < i < i«<i> •• . 

(3.4b) 1 - m < i (j) - j < 0  . 
m 

Clearly there are exactly m such polynomials corresponding to the m 

different choices of  i,n(j)  subject to (3.4b). 

We have assumed that u(x)  has a finite number of discontinuities. 

Hence for h sufficiently small there are at least m + 1 points of smooth- 
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ness between any two successive discontinuities.  Consequently if  (XJ,XJ+1) 

is an interval in which u(x)  is smooth, there is at least one choice of 

im(j)  such that u(x)  is smooth in x< (-4) < x * xi (j)+m* 

Next we show that any algorithm to assign im(j)  (3.4) to  (XJ,XJ+1) 

that has the property: 

(3.5) smoothness in  (XJ,XJ+1) ==> smoothness in  (x. (j\»x4 (-u+m)  ' 
m     m 

yields H^x.-u)  that satisfies both (3.2) and (3.3). 

Let XQ be a point that has a neighborhood in which u is smooth. 

Hence for h sufficiently small there is an interval  (XJ,XJ+1)  that 

includes xQ in which u is smooth.  It follows then from (3.5), (3.4) and 

the fact that a i+1/2 is an interpolating polynomial that uses data from an 

interval in which u is smooth that 

k k 

7T «m,j+1/2(x'u)   = Tk U(X>   + °<hffi+1"k)     for     °  < *  <  » 
(3.6) te ^ 

and x. < x < x...  ; 

this implies (3.2). 

We turn now to show (3.3).  First let us consider an interval  (xj,xa+1) 

in which u is smooth.  It follows immediately from (3.6) with k = 0 that 

(3.7) TV,       .(qm   ,  ) < TVr       , (u) +0(hm+1)  . 
[Xjfxj+1J  m, 3+1/2  "•   [x ,X       ] 

Moreover in the intervals in which u is smooth and — is bounded away from 

zero, it follows from (3.6) with k = 1  that for h sufficiently small 

dx Sn i+1/2 T °  in such an interval and consequently 

(3'8) ^I^^/V^l^' =TVtx.,xj+1]<
u)  • 

10 
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Next let us consider an interval  (x-,Xj+1)  that contains a single 

discontinuity of u.  It turns out that for h sufficiently small qffl i+i/2' 

for any choice of im(j)  in (3.4), is monotone in  (Xj,Xj+1);  this implies 

(3.8).  To simplify the argument let us consider the case that u is a step- 

function with the discontinuity located in  (Xj,Xj+1).  In this case u(xA) = 

u(xi+1)  for all i 4 J and therefore 

(3*9a) <*m,j-M/2(xi,u) s"Vj+V2{xi+1,u) 

for all indices i such that 

(3.9b) i + J and 0 < i-i-Cj) < «-1  • 

From (3.9a) it follows that -r— a  . « ._ has a root in each of the m - 1 

intervals  (xi*xi+1) with indices i satisfying (3.9b).  Since TJ— 9^ J+1/2 

is a polynomial of degree m - 1  it cannot have an additional root in 

(Xj,Xj+1)  and therefore a    J+1/2  
is strictlY monotone there. 

We conclude from the above analysis that an increase in total variation 

is possible only in those intervals in which u has a smooth local extremum. 

Since there is only a finite number of such intervals and since the increase 

there (3.7) is on the level of interpolation error, (3.3) follows (see [6] for 

a more detailed analysis). 

In the following we present an algorithm to assign i^fj)  to  (Xj,Xj+1). 

In order to satisfy (3.5) this algorithm makes use of the information about 

smoothness contained in a table of divided differences of u.  The latter can 

be defined recursively by 

(3.10a) utxj^ * u(x±) 

(3.10b)   u^,...^.^] - (u[xi+1,...,xi+kl - u[xif.. .,xi+k_1l )/(xi+k-xi) 

It is well known that if u is C,,, in  tXi»Xi+KJ  then 

1  d* 
(3*11a)    u[xi xi+k] -kTTT^i,^  '  xi *   Ci,k < xi+k  ' 

dx 



".»"» v».«-».«•« v« vrvvn.-k -">• L-OTS .viv;vM.V".VjV T. 

However if u has a jump discontinuity in the p-th derivative in this 

interval,  0 < p < k,  then 

(3.11b) u[xi#...,xi+k] - o(h"
k4p[—- u])  , 

I 
\S  1 "i+k'   ~v" S dxr 
> 

l> rd^   i 
here [  uj denotes the jump in the p-th derivative. 

I dx* 

Our algorithm is recursive:  It arrives at ^(x.-u), which amounts to 

assigning ir(j), by successively evaluating ik(j), k = 1,...,r. We start 

by setting 

(3.12a) l,(jj - j  , 

i.e.  q. +1/2 
is the first degree polynomial interpolating u at Xj and 

xj+1>  Let us assume that we have already defined ik(j),  i.e. q. A+A/J    
is 

the k-th degree polynomial interpolating u at 

(3.13) xik(j)"*"
xik(j)+k  * 

We consider now as candidates for «Iv+i H+I/O tne two (k+1)~th degree 

interpolating polynomials obtained by adding to (3.13) the neighboring point 

to the left or the one to the right» this corresponds to setting ik+i(j) • 

ifctj) - 1 or ifc+ifj) * *k^)' respectively. We choose the one that gives a 

(k+1)-th order divided difference that is smaller in absolute value: 

\(j) - 1 if |u[x± (jM x± (j)+k]| 

< |u[x±   ,...,x± (j)+k+1l| t 
(3.12b)   l

k+1<J
) = < 

V 
i. (j)     otherwise 

Using Newton's form of interpolation it is easy to see that 

VJ)+k 
(3-14)   <*k+1,j + 1/2 " *k,j+1/2 '  •|"lhM«l \+1(J)^1

] ' JX, (X"Xi)  ' 

12 
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s 

I 

I 

i 

,s 

t 

Since the product in the RHS of (3.14) is the same for both choices in 

(3.12b), we see that our algorithm selects as <h.+-\  i + i/2 tnis (k+1)-th 

polynomial that deviates the least from qk .4+1/2 
in ^xj'xj+1^*  Clearly 

r* 
•*• - if h is sufficiently small it follows from (3.11) that the algorithm (3.12) 

satisfies the requirement (3.5), and consequently has the desired properties 

(3.2) and (3.3).  However if h is not small, (3.14) shows that the algorithm 

attempts to find the "least oscillatory" polynomial (subject to the restricted 

choice in (3.12b)), and thus is meaningful also in this case. 

In the next two sections we describe two different techniques to solve 

the reconstruction problem (2.7) in terms of interpolation.  The importance of 

using the particular interpolation described in this section is that its non- 

oscillatory nature goes over to the reconstruction algorithm.  The non- 

oscillatory nature of R(x;u)  (2.7c) is demonstrated in section 7 by 

numerical examples (analysis is presented in [6]). 
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4.  Reconstruction via the primitive function. 

In this section we apply a technique frequently used in area-preserving 

approximations in order to solve the reconstruction problem in terms of 

g 

\ 

interpolation. 

Given cell-averages u.  of a piecewise-smooth function u e U 

(4'1) *j " ET U-l/2 u(y)dy     '     hj = VV2 " Xj-V2 

we can immediately evaluate the point-values of the primitive function U(x) 

(4.2) U(x) » JX u(y)dy 
x0 

by 

(4.3) I       hj ^ = ü(xj+1/2)  . 
•  0 

Since 

(4.4) u(x) = ~ U(x) 

we can apply interpolation to the point values of the primitive function (4.3) 

and then obtain an approximation to u(x)  by defining 

(4.5) R(x;ü) =|-j-Hr(x;U)  . 

We note that this procedure does not require uniformity of the mesh. 

£} The primitive function U(x)  is smoother than u(x)  (by one extra 

'- derivative) and therefore U e U.  Hence we get from (3.2) that wherever u(x) 

F        is smooth 
k _k 

(4.6) ^-T-H (x;U) - £- U(x) + 0(hr+1"K)  ,  0 < k < r  . 
I-: dxk  r       dxk 

t± 
\ Using (4.4) and (4.5) we can rewrite (4.6) as 

t A1 A1 I 
m?\ (4.7) ^-r-Rtxju) = -2—• u(x) + 0(h)  , 
k^ dx dx 

& 

1 
I thank Nira Dyn from Tel-Aviv University for pointing this out.  A similar 

approach was taken by Woodward [10] and Zalesak [11]. 
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which implies   (2.7a)   for     A - 0. 

We turn now to study    R(x;u),     the sliding average of   (4.5): 

(4.8) R(x;u)   - £ f£/2 R(x+y)dy - £ [Hr(x + |f   U)   - Hr(x  - |#   U)]      . 

Denoting the interpolation error by 

(4.9) e(x)   - HyU/U)   - U(x) 

we can rewrite   (4.8)  as 

R(xjü)  - 1  [U(x+ |)  - U(x- |)]   + ^ [e(x+ |)  - e(x- ^)] 

(4.10) 

Since 

(4.11a) 

^/^2
2«(y)dy+l[e(x+4)-e(x-§)] h Jx-h/2 

u(x)  + £ [e(x+|j-)  - e(x- £)] 

e(xj+1/2) 

R(x.ju) • u. 

(4.11b) e(x)  - 0(hr+1)     , 

we get from (4.10) that (4.5) satisfies (2.7b), i.e. 

(4.12a) 

and that wherever    e(x)     is smooth 

(4.12b) R(x;u)   - u(x)  +0(h~     )     . 

It follows from (4.12) that R(x;u)  is a piecewise-polynomial interpolation 

of degree r of u.  Kote that (4.12b) is one order more accurate than (4.7) 

with I  - 0,  which is R(xju) - u(x) + 0(hr). 

r+1 
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5.  Reconstruction via deconvolution. 

In this section we describe another technique to reconstruct a piecewise 

smooth function u e (J from its given cell-averages u.. We assume that the 

mesh is uniform and consider the cell-averages u.  to be point values of 

u(x), 

h J-h/2 (5.1a) u(x) - r- j_i/2  u(x-y)dy 

(5.1b) u, • u(x.) 

The function u(x)  (5.1a) was referred to earlier as the sliding average 

of u.  Here we consider it to be the convolution of u(x) with the 

characteristic function of a cell ^(x) 

j  1/h   for   |x| < h/2 
(5.2a) •.(x) - < 

\^ 0    for   |x| > h/2 

i.e. 

(5.2b) u(x) * £, utx-yj^tyjdy = (u*^)(i)  . 

In the following we describe a procedure to reconstruct u(x) up to 

0(hr)  for any finite r; this will be referred to as "finite-order 

deconvolution".  Expanding u(x-y)  in (5.2b) around y = 0, we get 

-      r u(k)(x) (-1)k fh/2  kA _ v   u*  <k>/ » 
(5.3a)     u(x) - I   -£, — !.h/2  Y dy = J o^h u  (x) 

k*0 k-0 
where 

(5.3b) 

Multiplying both sides of (5.3a) by h —r- and then truncating the expansion 
dx* 

in the RHS at 0(hr)  we get 

,*-(*), x  r~v~1  uk+* <*+*>, x  rt,w
r\ (5.4a) h u  (x) - I      ah  u    (x) + 0(h )  . 

k«0  K 

0 k odd 

2"k 

(k+D! 

„   A 

k even 
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Writing the relations (5.4a) for A • 0,...,r-1 in matrix form, we obtain 

1 

(5.4b) 

u(x) 

hü' (x) 

h^tx) 

1  0  a2  0  a4 *r-1 

wr-1 -(r-1), . h   u    (x) 

u(x) 

hu'(x) 

h2u"(x) + 0(hr) 

hr-Vr-1)(x) 

Let us denote the coefficient matrix in the RHS of (5.4b) by C.  This matrix 

is upper triangular and diagonally dominant.  Multiplying both sides of (5.4b) 

by C   from the left we get 

/u(x) 

/ hu'(x) 

(5.4c) 

-1 

/u(x) \ 

/ hü'(x) 

\ .r-1 (r-1). , 
\ h  u    (x)y \hr:iü(r-1)(x> 

+ 0(hr) 

/ 

Relation (5.4c) is the essence of finite-order deconvolution. 

Given u.  (5.1) we apply vhe  interpolation technique of section 3 to u 

a  —(£) 
and compute 0(hr)  approximations to h u  (x)  at Xj by taking 

appropriate derivatives of H^fx/u), m >  r-1;  denote these approximations by 

Dt   .,   0 < I  < r-1: 

(5.5a) 

(5.5b) 

Vj " Uj 

D£  - hl  u(A)(x.) + 0(hr)  ,  A =- 1, — ,r-1  . 

Using D« .  in the RHS of (5.4c) we obtain 0(hr)  approximations to 

h u* '(x.) which we denote by D. .,  i.e. 
j *» J 
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(5.6a) D0#;J - u(Xj) + 0(h
r) 

(5.6b) D   - h*u(Ä)(x ) + 0(hr)  ,  1 < £ < r-1  . 

Since C is an upper triangular matrix,  D0 .  are computed by back- 

substitution: We set 

(5.7a) Dr.1#j « Dr.1#j 

and then compute backwards for k • r-2#...,0 

_      r"1 

(5*7b) ^J " °k,j " J+1 »i
Difj • 

Finally we define 

r-1 
(5.8) R(x;u) - I    rrD. ,[(x-x,)/h]   for  |x-xJ <h/2  . 

K=0       *     ' 

It follows immediately from (5.6) that 

r-1 
(5.9) R(x;u) - £ ^-u(k)(x1)(x-x1)

k + 0(hr) - u(x) + 0(hr)  , 
k-0 k! 

which implies (2.7a). 

To see that the reconstruction (5.8) satisfies property (2.7b) 

(5.10a) R(x.;u) - u. 

we evaluate 

'V"' " h J-h/2 "VAj R(x »u) - T- /  /2 R(x.-y;u)dy 

to get 

(5. iob) R(Vu> - T h^-HT^ '-C2 **** -\)+ j, Vk,i    > 

where a  are (5.3b).  Relation (5.10a) then follows immediately from 

comparing the RHS of (5.10b) to (5.7b) with k - 0 

r-1 

and then using (5.5a). We note that this result is independent of the 

particular values assigned to D„ .  for  1 < I  < r-1. 
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Remarksi     (1) u(x)     is smoother than    u(x),    and therefore    u eii»> u e U. 

Consequently 

(5.11a) —-H(x;u)«—- u(x) + 0(h
m+1~k)  . 

dx* m       dx* 

Since Rjm    is only continuous at XJ,  for k > 1 

dk        - dk 
(5.11b)               —r H(x.+0;u) ? —r- H(x-0»u)  . _ K m i .Kmi dx     J dx     J 

In the numerical experiments presented in this paper we have taken 

(5.12a) D0 . - u^ 

(5.12b) ^   - hV^- Hn(x 40,«) f ±j Hm(xr0,u)) 
J      dx dx 

where M(x,y)  is the min mod function 

s • min(|x|,|y|)   if sgn(x) • sgn(y) = s 
(5.13)      M(x,y) 

0 otherwise 

Clearly this choice satisfies (5.5) for m > r-1. 

(2) The finite order deconvolution extends very easily to the case  where the 

mollifier $u(y)     Is replaced by a smoother function or a function with a 

different support. 
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6.  The constant coefficient case. 

In this section we consider the Godunov-type scheme (2.8) in the constant 

coefficient case 

(6.1a) U£ + ai^ =0,   a • const. 

(6.1b) u(x,0) = u0(x)  . 

The exact solution in this case is just pure translation with a constant 

speed a 

(6.2) u(x,t) - [E(t)»uQ](x) « u0(x-at)  . 

Consequently we can express the numerical scheme explicitly in the following 

form: 

(6.3) vn+1 = R(x.-ax;vn)  ; 

here R is the sliding average of R. 

The truncation error in the sense of cell-averages (2.5) is then 

(6.4) u(x-at) - R(x-axju)  , 

which measures how well R(*;u)  approximates u.  We have noted that 

generally if R(*;u) approximates u to 0(hr),  then R(*;u) approximates 

u to 0(hr+1),  which corresponds to an r-th order accurate scheme.  To have 

this gain of one extra order of accuracy we need spacial smoothness of the 

reconstruction error; this is evident from (2.4a) and more directly from 

(4.10) - (4.11).  When we do not have this smoothness we find that the scheme 

is r-th order accurate in the L^-norm but not in the maximum norm (see section 

7). 

We note that although the problem to be solved (6.1) is linear, the 

numerical scheme (6.3) is highly nonlinear.  The nonlinearity enters through 

the interpolation, where the stencil (3.12) is chosen differently at each 

point and each time level, depending on local smoothness of the numerical 

solution.  In this respect (6.3) is conceptually different from standard 
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finite-difference schemes where the stencil is arbitrarily predetermined. 

We would also like to point out that this scheme breaks aways from the 

somewhat artificial notion of "upstream differencing":  The decision what 

stencil to use in the reconstruction is made on the basis of smoothness 

considerations and has nothing to do with the "direction of the wind".  The 

latter enters only when applying E(T) in (2.8).  The resulting stencil is a 

combination of the two. 
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7.  Numerical examples. 

In this section we present some numerical examples in order to illustrate 

the nature of the approximations described in this paper. 

The first set of examples deals with smooth data.  In Figs. 1a to 1f we 

show approximations to u(x) = sin irx, - 1 < x < 1;  these were reconstructed 

via deconvolution (see section 5) from the cell-averages input 

,-, « » ——II       sinUh/2)      .   , (7.1a) u = u(x ) =  . h/2)— • sin (irx ) 

(7.1b) Xj = -1 + j • ^  ,   0 < j < N-1  . 

In this example we took N = 6 and extended the data outside  [-1,1]  by 

periodicity.  The cell-averages input is shown in Figs. 1a - 1f by circles. 

Both the reconstructed approximation R(x;u)  (5.8) and u(x) = sin irx are 

shown by solid lines. 

Let us denote the polynomial degree of H(x;u)  (5.12) by Pj and that 

of  R(x;u)  (5.8) by  PR: 

(7.2) Px - deg[H(x;ü)]  ,  PR = deg[R(x;ü)]  . 

Fig. 1a shows the reconstruction associated with the original first-order 

accurate Godunov scheme:  Pj • PR • 0. 

Fig. 1b shows the reconstruction associated with the "second-order" TVD 

schemes [3]:  Pj = PR = 1.  Comparing it to Fig. 1a we see that the local 

extrema are flattened in exactly the same way - this demonstrates the 

degeneracy to first-order accuracy there. 

Fig. 1c shows the reconstruction associated with the second-order 

accurate non-oscillatory scheme of [5]:  Pj =2, PR = 1.  Comparing it to Fig. 

1b we observe a considerable improvement in the quality of the 

approximation.  We also note that the reconstruction increases the total 

variation of the input data; however, this increase is small - it is of the 

size of the truncation error. 
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Figs. 1d, 1e and 1f show the reconstruction corresponding to Pj = k, 

PR • k-1  for k • 3,4 and 5,  respectively.  We observe that unlike the 

previous approximations, the reconstruction here does not go through the 

circles; this is a consequence of (2.6). 

The reconstruction R(x;u)  is discontinuous at x^+1/2
? tne size of 

the jump is proportional to the reconstruction error.  As we increase the 

accuracy of the reconstruction going from Fig. 1a to Fig. 1f, we observe that 

the size of the jumps becomes smaller and smaller; in Fig. 1f the jumps are 

hardly noticeable. 

In Table 1 we list the L^-norm of the interpolation error 

|H(X;U) - u(x)|  and of the reconstruction error  |R(X;U) - u(x)|  for a 

refinement sequence 

(7.3) N - 4, 8, 16, 32, 64  in (7.1) . 

We turn now to examine the performance of the resulting Godunov-type 

scheme (2.8) in the constant coefficient case 

(7.4) ^ + UJJ - 0,  u(x,0) • sin *x ,  -1 < x < 1  • 

We input the initial data in the form of the cell-averages (7.1).  Again we 

assume periodicity in space, which implies a period of  2 in time as well. 

In Table 2 we list both the L^- and the Lj-error at t = 2 of the 

scheme (2.10), (6.3) where R(x;u)  is reconstruction via deconvolution with 

Pj and PR defined by (7.2).  The calculations in this table were performed 

for the refinement sequence (7.3) with  X - T/h • 0.8.  In addition to the 

actual error we also list the quantity r which is the computational order of 

accuracy.  Assuming the error to be exactly e. = const*h  we evaluate r 

for any two successive calculations in the refinement sequence by 

(7.5) r - 1°92(eh/eh/2)  ' 
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In Table 3 we repeat the calculations In Table 2 for the scheme (2.10), 

(6.3) where now R(x;u)  is reconstruction via the primitive function (4.5). 

Here Pg denotes the polynomial degree of the interpolation H(x;U)  of the 

primitive function (4.2), i.e. 

(7.6) Pö = deg[H(x;U)J  . 

We observe from Table 2 that the schemes with Pj • k and PR = k-1 are 

(at least) k-th order accurate in both L^ and L^.  The TVD scheme with 

P_ = P_ = 1 is a little bit better than first-order in L  and a little bit 

worse than second-order in L-j. 

We observe from Table 3 that the schemes with the odd order Pg « 3 

and PJJ = 5 seem to be third and fifth-order accurate, respectively, in both 

the L^ and L-)  norms. 

However when Pg is an even number,  Pg = 2, 4, 6,  this order is 

realized only in the L-j-sense-  In the L^-norm it seems to be one order lower 

in accuracy. 

Comparing Table 2 and Table 3 for the fine mesh N = 64,  we find that 

the scheme from Table 2 with Pj = k and the scheme with P0 • k+1  from 

Table 3 seem to give comparable accuracy. 

We turn now to examine the performance of the various approximations when 

applied to the discontinuous function 

r -x sin(3nx2/2)      for -t < x < - 4 
3 

(7.7) u(x)   - { |sin(2Trx)| for     |x|   < 1 

2x -  1 - ? sin(3nx)     for    4 <  x <   1 

which we extend periodically outside  [-1,1]. 
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The circles in both Pigs. 2a and 2b show the given cell-average of (7.7) 

at N » 40 uniformly spaced mesh points.  The two solid lines in Figure 2a 

are u(x) and H(x;u) with nj - 6.  The two solid lines in Fig. 2b are 

u(x)  and R(x;u) with PR * 5. We see in both figures that the 

approximations give good accuracy in the smooth part and are essentially non- 

oscillatory.  This is as to be expected since N * 40 provides sufficient 

resolution of the problem in the sense that there are at least 7 points of 

smoothness inbetween discontinuities. 

In Figs. 3a and 3b we repeat the calculation in Fig. 2 for N - 15.  It 

is interesting to note that in spite of the lack of resolution in this case 

both approximations are essentially non-oscillatory. 

To compare the two reconstruction techniques we repeat in Fig. 3c the 

same case described in Fig. 3b, but now using reconstruction via primitive 

function with Pg = 6.  The main difference is in the rounding of local 

extrema at discontinuities present in Fig. 3b; this is due to the min mod 

operation in (5.12b). 

Next we apply the Godunov-type scheme (2.10), (6.3) to the solution of 

Uj. + ux • 0 with the initial data (7.7).  As before we initialize the 

computation by taking cell-averages of the initial data and use X - t/h • 0.8. 

In Figs. 4, 5 and 6 we present calculations performed with reconstruction via 

deconvolution using Pj • PR - 1  in Fig. 4;  Pj - 2, PR - 1  in Fig. 5 and 

Pj • 4, PR • 3  In Fig. 6.  The results are presented at:  (a) t • 2, 

(b) t = 4.  The circles in these figures show the reconstructed numerical 

approximation at the mesh points; the solid line shows the exact solution. 

We observe that in all cases we get non-oscillatory approximations, and 

that the schemes are dissipative in time.  The quality of the results improves 

with increasing formal order of accuracy. 
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In Fig. 7 we compare the two reconstruction techniques.  In Fig. 7b we 
L * 

repeat the same calculation as in Figs. 4 to 6 using Pj - 5 and PR • 4.  In 

Fig. 7a we use reconstruction via primitive function with Py = 6 in (7.6). 

Unlike the situation in Figs. 3b - 3c, here the two schemes produce very 

similar results. 

v 
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Table  1.    Interpolation and reconstruction L^-errors 

for    u(x)  • sin irx. 

N PT«1,PR-1 PT«2,PP«1 PT«3,Pp=2 PT«4,PR-3 PT«5,PR=4 PT«6,PB«5 

_   S 
*    i$ 
•    o 

J 
r B 

H 
0 
h 

4 

e 

16 

32 

64 

1.86X10"1 

6.85X10"2 

1.87X10"2 

1.86x10 -1 

2.84x10 -2 

7.39x10"2 

7.63x10"3 

-3 

-3 4.78x10 

1.20X10"3 

3.72x10 

4.71x10"4 

-4 5.36x10 

3.45x10"5 

7.39x10"2 

3.16x10"3 

1.07x10"4 

3.17x10"2 

9.37x10 -4 

1.70x10 -5 

3.17x10"2 

3.88x10"4 

3.39x10"6 

-6 

5.91x10 -5 2.17x10 -6 

3.40x10 

1.07x10"6 

2.76x10 -7 2.72x10 -8 

4.36x10 -9 2.14x10 -10 

a •  o 
5»     en 
«-'   ft 

fil   H 
w     ft 

• s- 
F? 
8 

8 

4 

16 

32 

64 

2.57X10"1 

1.64X10"1 

4.87X10"2 

1.27X10"2 

3.20x10~3 

2.57X10"1 

6.28X10"2 

-2 1.37x10 

3.27X10"3 

8.07x10 -4 

1.07X10"1 

1.52x10"2 

1.13x10"3 

7.54x10 -5 

7.88x10 -6 

1.07x10"1 

5.34x10"3 

2.15x10"4 

7.18X10"6 

2.52x10"7 

4.69x10"2 

1.74x10 -3 

3.28x10"5 

5.37x10"7 

8.49x10"9 

4.69x10"2 

5.85x10"4 

6.22X10"6 

5.23x10"8 

4.16x10 -10 
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Fig, la.  Reconstruction of sin ITX.  P 
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Fig.   2a.     H(x;u)     with    P    = 6    vs.     u(x).     N = 40 
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u(x).     N = 40. 
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Fig. 3c.  Reconstruction via Primitive function. 

R(x;G)  with  Py • 6  vs.  u(x).  N = 15. 
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Fig. 4a.  Solution with P = P = 1 and N = 40 at t = 2. 
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Fig. 4b.  Same as Fig. 4a at t = 4. 
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Fig. 6a.  Solution with P = 4, P = 3 and N = 40 at t =  2. 
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Fig. 7a.  Solution using reconstruction via primitive function with 
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